Each of these function machines has two steps. Give the missing inputs and outputs for each machine.
1)

Input
12
2000
7.2

a)

c)

Function
Function

c)
d)
e)

f)

1) Is each child's statement about the missing functions correct? Prove it!

Ola
\qquad

Thomas

2) Look at these two-step function machines.

Do you agree or disagree with each child's statement? Explain why.

\qquad
\qquad
\qquad
\qquad
\qquad

1) Give the missing function and missing inputs for this two-step function machine.

Input
12
a)
b)
c)
d)

Function

Output
11

9.2
17.75
2) a) Give an input number, two functions and an output that follow the rules set by the function machine.

Function

Function

Output

4
16
24
Make each
number in four
different ways.

For example:

$56 \div 2-24=4$	$=16$
$=4$	$=16$
$=4$	$=16$
$=4$	$=16$
	$=24$
	$=24$

b) Now use the function machine to make two output numbers of your choice that are >100.

Make each number in four different ways. Are there any numbers that can't be made?

