1) a) Substitute the values given for each shape to work out the values of each expression.

$=3$ \square $=5$

$+$

ii)

b) Draw the missing shape so that this expression has a value of 21 .

2) a) Use substitution to work out the values of these expressions.

$b+9$
$c-b$
$a c$
\qquad
\qquad
\qquad
$a+c+b$
b-3
\qquad
\qquad
b) Give the missing value so that the following expression has a value of $6 . \quad c$ - \qquad
3) Use substitution to work out the values of these expressions.
$c=0.5$
$3 f+z$
$10 c+f$
$4 z-f$
\qquad
\qquad
\qquad
$c+z+0.25$
$c f+z f$
\qquad
\qquad
4) Do you agree or disagree with each of these statements about this formula? Try substituting numbers into the formula to test your thinking.

$$
c=2 b
$$

a) In this formula, the value of c is 4 .
\qquad
\qquad
b) In this formula, the value of b is half the value of c.
\qquad
\qquad
2) Are the following statements true or false? Explain your reasoning.
a) When $f=3,8 f+9$ has a value of 32 .
\qquad
\qquad
b) When $x=10$ and $y=1.5, x y+20$ has a value of 35 .
\qquad
\qquad
c) When $x=2.5$ and $f=2.25,4 x+2 f$ has a value of 13.5 .
\qquad
\qquad

1) In both of these formulae, c stands for the same number and has a value between 20 and 100. Using substitution, give c a value and then find the possible values of a, b, x and z that will make all the formulae correct. Find two different solutions.

$$
c=4 x-z \quad 3 a+4 b=c
$$

2) By using substitution, give each of the shapes a different value so that the value of the expression will be a multiple of 6 . Find at least four different possibilities.

3) a) Substitute the values given for each shape to work out the values of each expression.

i)
 $+$ Λ
ii)

b) Draw the missing shape so that this expression has a value of 21 .

\qquad
4) a) Use substitution to work out the values of these expressions.
$a=6$
$b=2.5$
$c=12$
$b+9$
$c-b$
$a c$
$a+c+b$
b-3
b) Give the missing value so that the following expression has a value of 6 .
c - \qquad
5) Use substitution to work out the values of these expressions.

$$
c=0.5 \quad f=3 \quad z=1.25
$$

$$
\begin{array}{ll}
3 f+z & 10 c+f \\
4 z-f & c+z+0.25 \\
c f+z f &
\end{array}
$$

1) a) Substitute the values given for each shape to work out the values of each expression.

$=3$ \square $=5$

i)
 $+$

ii)
 -

b) Draw the missing shape so that this expression has a value of 21 .
 $+$
2) a) Use substitution to work out the values of these expressions.
$a=6$
$b=2.5$
$c=12$
$b+9$
$c-b$
ac
$a+c+b$
b-3
b) Give the missing value so that the following expression has a value of 6 .
c - \qquad
3) Use substitution to work out the values of these expressions.

$$
c=0.5 \quad f=3 \quad z=1.25
$$

$$
\begin{array}{ll}
3 f+z & 10 c+f \\
4 z-f & c+z+0.25 \\
c f+z f &
\end{array}
$$

1) Do you agree or disagree with each of these statements about this formula?

Try substituting numbers into the formula
 to test your thinking.

$$
c=2 b
$$

a) In this formula, the value of c is 4 .
b) In this formula, the value of b is half the value of c.
2) Are the following statements true or false? Explain your reasoning.
a) When $f=3,8 f+9$ has a value of 32 .
b) When $x=10$ and $y=1.5, x y+20$ has a value of 35 .
c) When $x=2.5$ and $f=2.25,4 x+2 f$ has a value of 13.5 .

1) In both of these formulae, c stands for the same number and has a value between 20 and 100. Using substitution, give c a value and then find the possible values of a, b, x and z that will make all the formulae correct. Find two different solutions.

2) By using substitution, give each of the shapes a different value so that the value of the expression will be a multiple of 6 . Find at least four different possibilities.

=a prime number

= a multiple of 4$+$
 $+$

3) Do you agree or disagree with each of these statements about this formula?

Try substituting numbers into the formula to test your thinking.

$$
c=2 b
$$

a) In this formula, the value of c is 4 .
b) In this formula, the value of b is half the value of c.
2) Are the following statements true or false? Explain your reasoning.
a) When $f=3,8 f+9$ has a value of 32 .
b) When $x=10$ and $y=1.5, x y+20$ has a value of 35 .
c) When $x=2.5$ and $f=2.25,4 x+2 f$ has a value of 13.5 .

1) In both of these formulae, c stands for the same number and has a value between 20 and 100. Using substitution, give c a value and then find the possible values of a, b, x and z that will make all the formulae correct. Find two different solutions.

2) By using substitution, give each of the shapes a different value so that the value of the expression will be a multiple of 6 . Find at least four different possibilities.

=a prime number

3) a) i) 16 ii) -5
b)

4) a) $b+q$
11.5
$c-b$
9.5
$a c$
72
$a+c+b$
20.5
$b-3$
-0.5
5) $3 f+2 \quad 10.25$

$10 c+f$	8
$42-f$	2

$c+2+0.25 \quad 2$

$$
2
$$

$$
2
$$

$$
5.25
$$

$c f+2 f \quad 5.25$

1) a) As we do not know the value of b in this formula, we have no way of knowing if the value of c is 4 . For example, if $b=2, c=2 \times 2$. This means c now equals 4 . However, if $b=3, c=2 \times 3$. This means c now equals 6 , not 4 .
b) This statement is correct. Although we do not know the exact values of b or c, we do know that 2 lots of b will give us c. If we apply the inverse operation, we can see that b must have a value that is half that of c.
2) a) This is false. $(8 \times 3)+9=33$
b) This is true. $(10 \times 1.5)+20=35$
c) This is false. $4 \times 2.5=10$

$$
\begin{aligned}
& 2 \times 2.25=4.5 \\
& 10+4.5=14.5
\end{aligned}
$$

1) A variety of answers are possible, for example:
$a=4, b=3, x=9,2=12, c=24$
$a=8, b=4, x=16,2=24, c=40$
2) A variety of answers are possible, for example:
$9+5+4=18$
$9+13+8=30$
$25+3+8=36$
$25+5+36=66$
