
Compare fractions with different denominators using equivalence.

$$1/_3 = 5/_{15}$$

$$\frac{5}{15} > \frac{3}{15}$$

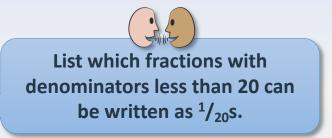
So, $\frac{1}{3} > \frac{1}{5}$

Compare fractions with different denominators using equivalence.

But what if we don't have a fraction wall to help us compare fractions visually?

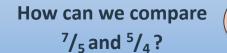
 $\frac{2}{3}$ $\frac{3}{5}$

We can write these as the same 'sort' of fractions, i.e. fractions with a common denominator, in this case 1/15s, to compare them.


Have a go at writing both $^{2}/_{3}$ and $^{3}/_{5}$ as $^{1}/_{15}$ s, then write > or < to compare them.

 $\frac{10}{15} > \frac{9}{15}$ So, $\frac{2}{3} > \frac{3}{5}$

 $2/_3 = \frac{10}{15}$ (multiply both numerator *and* denominator by 5)


 $3/_5 = 9/_{15}$ (multiply both numerator *and* denominator by 3)

Compare fractions with different denominators using equivalence.

Now use equivalence with $1/_{10}$ s to compare $1/_2$ and $3/_5$, and equivalence with $1/_{20}$ s to compare $7/_{10}$ and $3/_4$.

 $\frac{5}{10} < \frac{6}{10}$, so $\frac{1}{2} < \frac{3}{5}$ $^{14}/_{20} < ^{15}/_{20}$, so $^{7}/_{10} < ^{3}/_{4}$

Write the fractions as mixed numbers first, and then the fractional parts of each as $1/_{20}$ s.